Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting
نویسندگان
چکیده
منابع مشابه
All inorganic semiconductor nanowire mesh for direct solar water splitting.
The generation of chemical fuels via direct solar-to-fuel conversion from a fully integrated artificial photosynthetic system is an attractive approach for clean and sustainable energy, but so far there has yet to be a system that would have the acceptable efficiency, durability and can be manufactured at a reasonable cost. Here, we show that a semiconductor mesh made from all inorganic nanowir...
متن کاملPlasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting
Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light a...
متن کاملSingle-crystalline, wormlike hematite photoanodes for efficient solar water splitting
A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm² photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm²) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in a...
متن کاملSolar water splitting cells.
Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry A
سال: 2016
ISSN: 2050-7488,2050-7496
DOI: 10.1039/c6ta06405a